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This paper presents a mathematical model of a batch stirred-tank electrochemical reactor where a 
required cathodic reduction reaction is coupled with a complex reaction sequence between the 
reactant and the key product. The set of coupled, non-linear differential equations is solved 
numerically and simple dimensionless quantities characterizing the cell performance and selectivity 
are derived. The experimental results presented in Part I of this paper are found to be in excellent 
agreement with the model. In the particular case where the homogeneous chemical reactions may 
be neglected in the cathodic diffusion boundary layer, a simplified analytical expression of the 
process selectivity is proposed. This quantifies the effects of the operating conditions by means of 
a single dimensionless criterion. 

Nomenclature i* 
M e 

ae 
G , G ,  

cc 
GAS, CBS, 

Cos 
Go 
c2, c~ 

C2o, c~o 

C~s,i ; 

DA, DB 
D~ 
E 
F 
Ha o, Ha 

i 

electrode area 
specific electrode area 
molar concentrations of species A, 
B,C 
bulk molar concentrations 

kci 

k c 

kd 
KI, /s 

initial concentration of species A 
reduced concentrations (with respect K 
to CAs - section 2) 
reduced concentrations (with respect N 
to CAO) Qv 
-=- CBs /CAs  ri 
bulk concentrations in the ith reactor RA 
normalized with respect to CAo S 
molecular diffusion coefficients T 
= DB/DA t 
electrode potential t + 
Faraday's constant V 
Hatta numbers defined with respect XA, XB, 
to CAO or CAS Xc 
current density y 
limiting current density 

dimensionless current density 
(Equation 6) 
chemical rate constants involved in 
scheme I 
chemical rate constant of scheme II 
mass transfer coefficient 
dimensionless parameters defined in 
Equation 13 
dimensionless parameter defined in 
Equation 17 
impeller rotation speed 
volumetric flowrate 
chemical reaction rate 
conversion factor of species A 
product selectivity 
temperature 
time 
dimensionless time = t(kdG) 
volume of catholyte 
molar fractions, i.e. CAs/CAo; 
Gs/CAo; Cos~Go 
coordinate perpendicular to the elec- 
trode 

* This paper was presented at the meeting on 'Electroorganic Process Engineering' held in Perpignan, France, 19-20 
September 1985. 
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y§ reduced coordinate = y/6 Subscripts 
v, number of electrons involved in the f final 

reduction L limiting 
space time 0 initial (time = 0) 

S in the bulk of the electrolyte 

1. Introduction 

The first part of this study [1] presented an experimental investigation of the effect of important 
hydrodynamic, electrochemical and geometric parameters on the performance of a batch stirred- 
tank reactor, with a specific example of an electrochemical reduction for a required product coupled 
with homogeneous chemical side reactions. It was shown that different operating conditions of the 
cell may considerably modify the time distribution of the reaction rate and the concentrations of the 
electroactive species for a potentiostatic operation and, consequently, play a significant role in the 
overall process selectivity. 

The numerous interconnections between different physical, chemical and electrochemical 
phenomena mean that the choice of the best operating conditions and cell design requires a general 
theoretical analysis of this problem based on a chemical engineering approach. Part I presented the 
overall reaction scheme for the electroreduction of N-nitroso-2-methylindoline to N-amino-2- 
methylindoline coupled with unwanted homogeneous reaction. Here in Part II we present a 
theoretical study of some aspects of the coupling between electrochemical and chemical reactions 
and, in particular: 

(i) the effect of the chemical rate constants on the operating current density under potentiostatic 
conditions. 

(ii) the modelling of a batch stirred-tank electrochemical reactor based on the film model. 
The set of coupled differential equations is solved numerically and the comparison between the 
calculations and the experimental results is presented. 

An analytical solution is derived for the overall selectivity which depends on a single dimension- 
less parameter in the case where the chemical rate constant is sufficiently low for the chemical 
reaction in the boundary layer at the working electrode to be neglected. 

The incorporation of complex reaction sequences in engineering models of electrolytic cells was 
the subject of a recent paper [2], which dealt with the paired synthesis of propylene oxide in an 
undivided cell as a convenient system for model studies. This paper gave an excellent review of the 
mathematical tools for simulating cell and process behaviour. 

The present paper presents a similar approach for the particular case of the synthesis N-amino-2- 
methylindoline with the additional objectives of deriving simple dimensionless quantities charac- 
terizing the process selectivity and of comparing the model to the experimental results. 

2. Theoretical formulation: effect of the chemical rate constants on the operating current density 
(potentiostatic operation and static analysis) 

2.1. Basis of the model 

Let us consider the mechanism 

A + v e e  ~B 

A + B -  ~2C 

where the homogeneous chemical reaction is characterized by the rate constant, kc, in its simplified 
form (scheme II of Part I). For a batch stirred-tank reactor, we define two zones inside the cell (see 
Fig. 1): 
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Fig. 1. Schematic diagram of the two zones defined in the 
cell. 

(i) the bulk where there is no spatial concentration gradient 
(ii) the film near the working electrode (cathode), where the gradients are located. 

At a given instant the concentrations of  the reacting species in the bulk are CAS and Cas. 
The mass balances of A and B inside the diffusion layer are as follows 

d2CA kcCAC B = 0 (1) DA dyE 

d2CB kcCA C a 0 (2) 
DB dy----5- - 

Under potentiostatic limiting current conditions, the following boundary conditions apply for 
Equations 1 and 2 

y = 5; CA = GAs; CB = C~s; 

y = 0 i 
DA = - -  DB vCF 

The definition of  a dimensionless quantity relating the competition between the chemical and 
electrochemical reaction rates is derived using the following reduced variables: 

Equations 1 and 2 are then reduced to 

y+ = y/5 (3~) 

c 2  = CA/CAs (32) 

Cr = CB/C.s (33) 

O~ = DB/D A (34) 

Ha 2 = kc52CAs (35) 
D~ 

d2Cs 
dy+2 Ha2Cs Cff = 0 (4) 

d 2 C~- 
D~ dy+2 Ha 2 C~ C~ = 0 (5) 

with the boundary conditions: 

y+ = 1; C2 

y +  = 0 dCs = 

dy + 

= 1; CB+ = Css = C*s 
CAs 

0 

-D~- dC~- _ i = i* (6) 
dy + vr CAs 
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with 

kd = DA/6 

The dimensionless number, Ha, defined by Equation 35 is the Hatta number. This number plays an 
important role in transfer phenomena with chemical reaction, and its significance has been outlined 
in literature dealing with multiphase reactors [3, 4]. Ha 2 may be also written in the following form: 

Ha 2 - kc62CAs --  kcC~s(6Ae) (7) 
DA k d A e CAs 

The numerator of Equation 7 gives the instantaneous maximum flux of A by chemical reaction in 
the diffusion layer, whereas the denominator is the limiting diffusional flux if no chemical reaction 
takes place. Therefore Ha z gives a quantitative evaluation of the competition between the chemical 
and electrochemical reaction rates. 

In Equation 6, i* denotes a dimensionless form of the current density which gives the ratio of i 
to the limiting current density, iL, corresponding to the concentration CAS with no chemical reaction 
(i L = veFkdCAs ). Therefore i*, which is between 0 and 1, measures the limitation of the current 
density by the chemical reaction inside the diffusion layer. 

2.2. The solution technique 

In the general case, and for a given value of C's, no analytical solution of Equations 4 and 5 exists 
and numerical integration is required. This integration can be greatly simplified by using the fact 
that 

d 2 C~ d z C~" 
dy+2 = D~- dy+2 (8) 

Two successive integrations of Equation 8 lead to the following relation between C~ and C + : 

C~ - 1 = D ~ ( C ~  - C's) + 2(y  + - 1)i* (9) 

Equation 4 is then solved, taking into account Equation 9 which relates C + to C + . For given values 
of Ha 2 and C~'s, the differential equation has been solved numerically through a five-order Runge- 
Kutta method from y+ = 0 to y+ = 1. The boundary condition at y+ = 0 (i* = dC~/dy +) has been 
estimated by a numerical optimization method (Simplex; [5]), which minimizes the error of the 
boundary conditions at y+ = 1 (C~ = l a n d  C~ = C's). 

2.3. Discussion o f  the model predictions 

For D~- = 0.62 which corresponds to the experimental results of Part I and different values of Cffs, 
Fig. 2 presents the calculated variations of the dimensionless current density, i*, with the Hatta 
number; Fig. 3a-c report some theoretical concentration profiles of A and B inside the diffusion 
boundary layer. 

Examination of these figures leads to the following conclusions. 
(i) For sufficiently small values of the Hatta number, i* remains close to 1 and i = iL = v~Fkd CAS. 

In this case i is limited by the electrochemical reaction and the concentration profiles are linear (see 
Fig. 3). The transition point from which i* begins to decrease below 1 depends on the value of C*s 
and is obtained for smaller Ha values when Cd's increases. 

(ii) For higher values of Ha (i.e. higher chemical rate constants, kc, and/or bulk concentrations, 
CAS), i becomes limited by the homogeneous chemical reaction and i* decreases. The limit of i* 
depends on C~'s (ratio of CBs to Cas); an interesting result is that the value of this limit can be different 
from zero for small bulk concentrations of B. As an example, the limit is 0.5 for C~' s = 0 (see 
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Fig. 2. Calculated variations of the normalized current density, i*, with the Hatta number (D~- = 0.62). Dashed curves = 
Equation 11. 

Fig. 2). Indeed, Equation 9 written for y+ = 0 where C2 = 0 leads to the following expression: 

I + D ~  C + [( B )y+=0 - C~s] 
i* = 

2 

and consequently (due to the fact that (CB +)y+ =0 > 0): 

1 - Df fCCs  
i* > 2 (10) 

for C* s = 0; i* > 0.5. 
It follows from this that: 
(i) for C~s < 1/D~, the limit of i* has a finite value different from zero, but smaller than 0.5 
(ii) for C~'s > I /D~,  the limit of i* is zero when Ha ~ co. 

This result also appears clearly in Fig. 3 by considering the final slope (for Ha ~ oo) 
[ d C * / d y  +]y+ =0 = i* of the concentration profiles of species A. 

Obtaining a finite value of i* when Ha ~ oo means that the current density would not drop to 
zero even with an instantaneous chemical reaction between A and B. In such conditions (where 
C*s < 1/D~), B is the limiting reactant in the reaction A + B (c) 2C; this point explains the 
observed phenomenon. Finally it should be mentioned that there is a possibility of obtaining profiles 
of B with a minimum inside the boundary layer (see, for example, Fig. 3b, c). 

In the i* versus Ha plot of Fig. 2 the dashed line, which starts from i* = 0.76, defines two zones. 
In the upper part, CB + decreases in the layer from the electrode to the bulk, whereas in the lower part 
a minimum value is obtained. 

2.4. A simplified model 

As mentioned previously no analytical solution of Equations 4 and 5 exists in the general case, but 
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Fig. 3. Calculated concentration profiles of A and B inside 
the diffusion boundary layer. Influence of the Hat ta  number.  
(a) C~s = 0; (b) C* s = 1; (c) C~s = 1000. 
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for large values of C~'s the integration may be performed by assuming, as a first approximation, that 
Cff = constant = C~'s in the boundary layer. In this case one easily obtains the following analytical 
expressions for C~" and i*: 

sh [Ha(C~s)~y + ] 
c?, = 

sh [Ha(C's) ~1 

and 

i* (dC;']  Ha (C~'s) 1 (11) 
kay J~+=0 sh [Ha(C~s) �89 

The comparison of the values of i* given by Equation 11 and those calculated by numerical 
integration is shown in Fig. 2, which indicates that Equation 11 holds for C*s > 10. The main 
conclusion of this section, concerning a steady state analysis at a given instant inside a batch reactor, 
is that i in its dimensionless form, i*, only depends on two dimensionless quantities, i.e. the Hatta 
number and C~s, their quantitative influence being given in Fig. 2. 

Concerning the analysis of a batch reactor, which is the subject of section 3, Ha decreases with 
time due to the depletion of A, whereas C*s increases from zero (at the beginning of electrolysis 
where Cao = 0) to infinity. Therefore, considering Fig. 2, there is no simple way of predicting the 
type of change of i* (increase or decrease) during the progression of the reaction. 

3. Mode l l ing  of  a batch st irred-tank e lectrochemical  reactor (dynamic  analysis)  

3.1. Case of the simplified chemical mechanism, scheme H [1] 

The modelling of a batch reactor can easily be performed on the basis of the study of a continuous 
stirred-tank reactor (CSTR), extending it to a piston flow reactor, PFR (approximating a PFR as 
a cascade of a large number, n, of CSTRs in series) and then to a batch reactor, since the space time, 
~, of the PFR is simply replaced by the time, t. This classic procedure in chemical reaction 
engineering [6] is illustrated in Fig. 4. 

In the case of the ith CSTR, operating under steady, continuous flow conditions, the inlet and 
outlet concentrations of A and B are respectively denoted (CAs,i_I; CBS,i_I) and (CAs,i; CBS,i ). 

The calculation method of a CSTR is based on writing the mass balances of species A and B in 
each of the two zones defining the reactor, i.e. the bulk and the film near the working electrode. This 
leads to the following relations. 

(i) In the bulk: 

QvCAsi-, = QvCAs.i + k~Cas,CasiV + DAAe (dCg~ (12) 
' ' ' \ dy  ,,'y:,~ 

( "1 "1 
c STR ) 

II~ 

Fig. 4. Schematic diagram of a series of  CSTRs as a model for a piston flow reactor. 
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and a similar expression for B. The last term corresponds to the flux of  A at the limit of  the two 
zones. 

(ii) In the diffusion layer the mass balances are represented by Equations 1 and 2, which should 
be solved with the same boundary conditions as for Equations 1 and 2. 

Using reduced variables leads to the following dimensionless quantities: 

y+ = y/6 (131) 

Ct~ 0 = CA/CAo (inside the diffusion layer) (132) 

Cr = Cs/CAo (133) 

C[,s,; = CAS,;/CAo (in the bulk) (134) 

D~ = DB/D g (13,) 

H 4  = kcDACAo (136) 
k~ 

Kl = kczCgo (137) 

K2 = kda: (138) 

where v = V/Qv is the space time of the electrolyte and a e = Ae/V is the specific electrode area. 
It should be noted that, compared to the previous analysis of  section 2 (which was a static 

analysis), CZo, C~-o and Ha~ here represent dimensionless quantities formally identical to those used 
in section 2 but based on the inlet concentration CAO in the first reactor (see Fig. 4). 

The following mass balance equations are then obtained: 
(i) In the bulk 

(dC;  4 
c;s,;(1 + K,c~,;) + K~\ y ) , ,+: ,  = C2+s.;-, (141) 

c~. , (1 + K, C2s.,) + S:~Dr (dC;o) = C ~ j _  1 (142) 
\ Y Jy+=l 

(ii) In the diffusion layer 

f 2 + 

d ~ C s  ~ , 2 , - , +  ,.,+ _ 
dy+2 .~ �9 ~o ,,.,AO ~-,BO -- 0 

d 2 r +  rx+ "~BO ,r4r ,~2 r + F'+ 
u y -  

(151) 

with the boundary conditions 

y+ = 1; C.;o = C?,s,,; C~o = cr 

C2o = 0 

y+ = 0 (dC,~o'] (dC~o'] 
k, dy + .] = - -D~ \d--~-~- j 

By considering Equations 13, 14 and 15, the performance of  the reactor only depends on three 
dimensionless numbers: H ~ ,  K~ and K2. The physical meaning of H ~  has already been discussed; 
/s and K 2 are operating criteria related to the geometry and mixing state of  the cell. In the general 
case, the system of Equations 14 and 15 cannot be solved analytically and requires numerical 
integration. 

0 (t52) 
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L~ I ~ '  I - ~  I ~ z' o.8~',,,..~. I s=h~m']I I - ~ 1 7 6 1 7 6 1 7 6  " - *  I ~,9.4 i 

t [s] 
0 10(33 2000 3000 4000 5000 

Fig. 5. Calculated time variations of the molar fractions XA, Xs, Xc and selectivity S for reaction scheme I1. Comparison 
with the experimental results. CAo = 62.87 mol m-3; T = 302 K; N = 1000 r.p.m; ae = 115.3 m -~ . 

In principle, a numerical method identical to the one presented in section 2 can be used here with 
the difference that the boundary conditions at y+ = 1 must verify the mass balance equation (14~ and 
14 2) in the bulk of the CSTR. As mentioned previously, the calculation procedure for the batch reactor 
is obtained by repeating the calculation of a single CSTR (see Fig. 4) n times using a sufficiently small 
space time, AT, of 30 s (equivalent to an increment of time At) for each reactor. It should be 
mentioned that the numerical integration is quite long: 250 mn CPU for simulating 80 mn of batch 
reactor time with a Honeywell Bull Mini 6/92 computer. 

10(~ X~' . . . . . . . .  1 'XB'Xc'~ A B C S St[%] " 
0.@ \ \ \  Experim,nt --0-- ---13--- --A-- .---X-- 56.7 4 

Scheme 1I -0. - . .o-  -o- . -o-  ~ ~ 49.6 / 

t 
o ' dm 2o00 3000 ~  ' o 

Fig. 6. Calculated time variations of the molar fractions XA, XB, X c and selectivity S for reaction scheme II. Comparison 
with the experimental results. Cao = 103-24molm-3; T = 294K; N = 1000r.p.m.; a e = 42.7m -~ . 
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Figs 5 and 6 present some theoretical results calculated by this method for two different sets of 
operating conditions and compare them to the corresponding experimental time variations of the 
mole fractions XA, XB and Xc inside the cell. Examination of these figures shows that the agreement 
is very satisfactory, particularly for the conditions of Fig. 5. An important point concerns the 
calculated variation of the selectivity, S, which decreases continuously from 100% to a final value, 
St, obtained when Cas = 0. The initial value of S (100%) is inherent to the type of simplified scheme 
II used in the mathematical model, but there is no experimental evidence to confirm this result due 
to the lack of experimental points at the very beginning of the experiments. 

3.2. Case o f  the complete chemical mechanism, scheme I [1] 

In Part I of this work [1] it has been shown that the simplified scheme II could give a good 
representation of the homogeneous chemical reaction between A and B, but that a more realistic 
reaction sequence involved the four mechanisms reported in Table 1. The chemical rate constants, 
kci, in this sequence were deduced approximately by a best-fit method using some experimental 
results presented in Part I (see Table 2 of Part I). Using a similar integration method as above for 
a batch reactor, we have calculated the time variations of the fractions XA, XB and Xo starting the 
calculation of a single CSTR and extending it to the batch mode of operation (Fig. 4). 

For the ith CSTR, the mass balance equations and the corresponding boundary conditions are 
summarized in Tables 2 and 3. The conservation equations were applied in both catholyte and the 
catholyte boundary layer and represent transport by diffusion with simultaneous homogeneous 
chemical reactions neglecting ionic migration. Compared to the case in section 3.1, the calculation 
time on a Mini 6/92 computer is even higher due to the more complex reaction sequence involved: 
600 mn CPU for 15 min batch reaction time. 

For the operating conditions considered in Figs 5 and 6, Figs 7 and 8 present the theoretical time 
variations of XA, XB, Xc and S using scheme I and compare them to the experimental results. As 
can be seen, the agreement is quite satisfactory for both types of experiments though the experi- 
mental values of the final selectivity, St, are always higher (about 7%) than those predicted by the 
model using scheme I. Furthermore, by comparing the calculated variations using schemes I and II 
(see, for example, Figs 6,8), it can be concluded that the simplified scheme II constitutes a very good 
approximation for all the chemical mechanisms involved. A small difference exists, however, if one 
considers theinitial value of the selectivity which is 100% for scheme II and zero for scheme I: this 
observation may be explained by the chemical generation of species NO + (see first mechanism of 
Table 1) which occurs before the third mechanism at the beginning of an experiment. 

In conclusion, for the N-amino-2-methylindoline system, it might be very useful to incorporate 
scheme II in an engineering model of an electrolytic cell since, in this case, the computation times 
as well as the data base needed (transport properties, chemical rate constants) are much smaller. 

Table 1. Homogeneous chemical reactions and kinetic laws involved in scheme I 

Homogeneous chemical reactions Kinetic laws 

r 1 

A + H + ~ C  + NO + 
r-- I 

r2 S + NO + + EtOH ~ EtONO + 
r 3 

B + N O  + ~ C + N20 + H + 

r4 

B + H + ~ B H  + 
r-- 4 

rl = k ~ l C . ;  khl = k c , [ H  +] 

r , = kc_,CcCNo + 

r 2 = k~2CNo+; k~2 = kc2 [EtOH] 
r 3 = kc3CBCNo + 
r4 = k~4G; k~, = kc4[H+l 

r _ 4  = k c _ 4 C B H  + 
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Table 2. Mass balance equations for the continuous stirred-tank electrochemical reactor with row T (scheme I)  when y > 6 

Species Mass balances (y > 6) 

BH + 

NO + 

D A fdC~ Q~CAs.i_ , = V(r, -- r_,)y=o + A ~ " ~ y  ] + Q. CAs, i 
\ ly=~ 

Q v C B s ,  i_I  = V(r  3 + r 4 + r _ a ) y = 6  + D ~ A e ( d C t 3 ~  \ dy fy=~ + Q~CBs'i 

/ d C . . ~  
QvCsH+s,i_l = g ( - r  4 + r_4)y=O + ~H,Act-~-~-y )y=~ + Q~CsH+S.i 

Q.Ccs, i_ , = V ( - - r  I + r _ t -  r3)y=, + DcA. (dCc '~  \ dy/,=~ + a,C~s,~ 

//dCNo+" ~ 
Q~CNo+S,i_i = V ( - r  I + r_ l + r 2 + r3)y= 6 q- D N o + A e t T ) y : 6  + Q~CNo+s,i 

4. Approximate analytical model of batch electrolytic cell for small Hatta number (simplified 
chemical scheme) 

The effect of the chemical rate constant, kc, on the instantaneous current density was studied 
theoretically in section 2 for a potentiostatic operation. It has been shown that for a small Hatta 
number, the dimensionless form, i*, of  the current density remains close to 1 (see Fig. 2), i.e. that 
at any time: i = i L = v~FkdCAs. 

In fact, this implies that the chemical reaction in the boundary layer at the working electrode may 
be neglected and consequently that the concentration profiles of A and B are linear at any time in 
the layer of thickness 6. With this approximation, the mathematical model is greatly simplified since 
the conservation equations of A and B in the bulk take the following forms: 

Table 3. Mass balance equations for the continuous stirred-tank electrochemical reactor with row T (scheme I) when 0 < y < 3 

Species Mass balances for  0 < y < 6 Boundary conditions 

When y = 0 When y = 6 

A 

B 

B H  + 

C 

NO + 

(d2 CA'~ 
D A \ d y  2 /] = r , - - r  2 

/~  \ dY 2 J = r 3 + r 4 - -  r_4 

;d2C..§ ~ 
D . . + \  dy 2 j = - r , + r  4 

D c \ d y 2  ] = - r t + r - i - r 3  

DNO+ ~, dy 2 J = _ r I + r_l + r2 + r3 

(dCA~ i 
\ T L = o  = O '  (cA ,~ = 0 

D " n + \  dy Jy=o = - vo-"F 

( d C c ~  = 0  
\-b-y L .  ~ 

DNo+ \ - a T L =  ~ = o 

( C A ) y = 6  = CAS, i 

(cB)y=~ = CBs, 

( C B H + ) y =  6 = CBH+S,i  

(Cc)y=~ = Ces, i 

(C~o+) , - '  = %o+s,~ 
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Fig. 7. Calculated time variations of the molar fractions X A, XB, Xc and selectivity, S, for reaction scheme I (operating 
conditions of Fig. 5). Comparison with the experimental results. CAO = 62.87molto-3; T = 302K; N = 1000r.p.m; 
a~ = 115.3m -~. 
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T h e  last  t e rms  o f  E q u a t i o n s  16, a n d  162 c o r r e s p o n d  to the  flux o f  A a n d  B at  the  l imi t  o f  the  

ID~ ! ~ | I | | i | i 

XA. XB, Xc, A B C S Sr [%] 
Experiment - - 0 - -  - - 0 - -  - - ~ - -  ~ X ~  6Z 1 

l 
O.8 

\ ' Scheme I -o--o- -o-o- ~ 59.9 
t 

0.6 -- -~ 

Q2 

t Is] 
01 ' ' ~ ~  ' 0 ' ' 

1000 2000 3000 4000 5000 
Fig. 8. Calculated time variations of the molar fractions XA, XB, X c and selectivity, S, for reaction scheme I (operating 
conditions of Fig. 6). Comparison with the experimental results. CAO = 103.24molm-3; T = 294K; N = 1000r.p.m; 
a e = 42.7m -t.  
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boundary layer, which now have a simplified expression due to the linear variations of CA and CB 
in the boundary layer. 

Under dimensionless form, Equations 16~ and 162 are reduced to 

-+- KC+sC~s -+- C2s = 0 (171) 

dC~s 
-d'7- + KC+sC~s - Cs = 0 (172) 

with 

and 

C2s = CAs/CAo, C~ = CBS/CAO 

t + = t ( k d a ~ )  

K - k~CAo _ KI = k cCA2oV 

kd a~ K2 kd Ae CAO 

The boundary conditions for t + = 0 are: Cs = 1; C~s = 0 
In Equations 17~ and 172, t + is a dimensionless form of the electrolysis time, t, whereas K is a 

criterion governing the overall process selectivity. Compared to the Ha~ number introduced in 
section 3.1, which gives a quantitative evaluation of the competition between the chemical and 
electrochemical reaction rates in the diffusion boundary layer, K has a similar meaning concerning 
the competition occurring in the bulk. 

No analytical solution of Equation 17 exists, but the variations of S with the conversion factor of 
the reactant A are easily found analytically. Indeed, dividing Equation 171 by 172 gives simply: 

dC;s KC~s + 1 
= ( 1 8 )  

dCr XC~s- 1 

which after integration leads to the relation between Cs and Cffs: 

C s  1 = C~ + 2/Kin(1 - KC~s) (19) 

Equation 19 relates the conversion factor R a = 1 - C+s of the reactant A to the product KC~s: 

KR~, + KC~s + 2 I n ( 1  - KC~s ) = 0 (20) 

Furthermore, the instantaneous selectivity, S, may be expressed as 

s = C B s  = c~ _ z<c~ 
C a o -  CAs 1 - Cs KR a 

Elimination of KC~s between Equations 20 and 21 yields the curve shown in Fig. 9 which gives the 
theoretical variation of S with K(1 - Cs 

It should be mentioned that during an experiment, S varies from 1 (at t = 0) to a final value Sr 
(for t --+ oo) which corresponds in Fig. 9 to the ordinate obtained for the value K of the abcissa 
(since Cs --+ 0 for t ~ oo). The validity of  this mathematical development, leading to an analytical 
expression of  the selectivity, has been verified by showing experimental results of  Sr (Fig. 9), 
obtained under very different operating conditions presented in Table 4. As can be seen, the 
experimental points are found to be in very good agreement with the theoretical curve. It should be 
remembered that this mathematical model is restricted to the case where i* remains close to 1 during 
the extent of  the reaction, i.e. for sufficiently small values of the Hatta  number. By considering the 
conditions of Table 4, it can be shown that this hypothesis is effectively valid since Hao is smaller than 
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t o \  s 

-~ o o.1 02 - 
0.6 K 0 _cA;) 

O.4 

THEORETICAL 
0.2 CURVE 

K (1 _ CA;) 

o' ~ ..... ~_ ~ - ~  

Fig. 9. Theoretical variations of the selectivity, S, with the product K(I --C~s ). Comparison with the experimental results 
(the numbers correspond to the operating conditions of Table 4). 

3.7 x 10-2 for all experiments considered. In Fig. 9 the comparison was restricted to the final 
selectivity, Sf, but the good agreement between model and experiment was also verified for the 
instantaneous" selectivity. 

Consequently, this analytical engineering model of a batch stirred-tank electrochemical reactor 
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is perfectly adapted to the prediction of  the selectivity in the N-amino-2-methylindoline electro- 
chemical process. 

5. Conclusions 

This work has presented an engineering model of  a batch or a continuous stirred-tank electro- 
chemical reactor where simultaneous homogeneous chemical and electrochemical heterogeneous 
reactions occur. The example of  N-amino-2-methylindoline synthesis has been used for illustrating 
the procedure followed in this study, since comparison of the theoretical results to those deduced 
from an experimental approach demonstrates the validity of the mathematical simulation and 
quantifies its accuracy. As the level of sophistication of the chemical reaction sequence coupled with 
the electrochemical desired reaction increases, it may be interesting as a first approximation to 
consider a simplified chemical scheme in the model when the data base (transport properties, rate 
constants) is insufficient, necessitating further difficult experiments, and the computing time 
becomes too important. This is particularly true when economic optimization of  the process has to 
be performed. 

The possibility of deriving simple dimensionless quantities characterizing the cell performance 
and selectivity is an additional advantage of  a simplified but realistic reaction scheme. For  the 
N-amino-2-methylindoline system, the results obtained experimentally in a batch reactor are in 
excellent agreement with the predictions of  the model which, therefore, can be extended in principle 
to other specific processes. 
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